
Don’t Use a Cannon to Kill a Fly:
An Efficient Cascading Pipeline for Long Documents

Zehua Li
zehuali@law.stanford.edu

Stanford University
Stanford, California, USA

Neel Guha
nguha@cs.stanford.edu
Stanford University

Stanford, California, USA

Julian Nyarko
jnyarko@law.stanford.edu

Stanford University
Stanford, California, USA

ABSTRACT
The computational cost of transformer-based models has a qua-
dratic dependence on the length of the input sequence. This makes
it challenging to deploy these models in domains in which long
documents are especially lengthy, such as the legal domain. To
address this issue, we propose a three-stage cascading approach for
long document classification. We begin by filtering out likely irrel-
evant information with a lightweight logistic regression model be-
fore passing the more challenging inputs to the transformer-based
model. We evaluate our approach using CUAD, a legal dataset with
510 manually-annotated, long contracts. We find that the cascading
approach reduces training time by up to 80% while improving base-
line performance. We hypothesize that the gains in performance
stem from localizing the classification task of the transformer model
to particularly difficult examples.

CCS CONCEPTS
• Applied computing → Law; Document analysis; • Computing
methodologies→ Information extraction.

KEYWORDS
Legal NLP, cascading classifiers, large language model
ACM Reference Format:
Zehua Li, Neel Guha, and Julian Nyarko. 2023. Don’t Use a Cannon to Kill
a Fly: An Efficient Cascading Pipeline for Long Documents. In Nineteenth
International Conference on Artificial Intelligence and Law (ICAIL 2023), June
19–23, 2023, Braga, Portugal. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3594536.3595142

1 INTRODUCTION
Legal long document analysis—the task of detecting whether a long
legal document (e.g., a contract or lease) contains a particular type
of clause and then analyzing it—is a common and important task
for lawyers [21]. As part of due diligence, they may review a large
set of contracts in order to determine the prevalence of clauses
exposing a company to liability (e.g. force majeure provisions in
the aftermath of COVID-19) [16]. In promoting access to justice,
advocates may want to analyze the number of leases which contain

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICAIL 2023, June 19–23, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0197-9/23/06. . . $15.00
https://doi.org/10.1145/3594536.3595142

oppressive or unenforceable terms [22]. Traditionally, this type
of inquiry has been onerous, requiring individual lawyers to sift
through many pages of documents in order to annotate and analyze
all relevant provisions.

In recent years, large language models (LLMs)—powered by the
transformer architecture [11]—have illustrated a remarkable capac-
ity to match or exceed human performance on a variety of natural
language tasks [5, 8, 11, 26, 30, 35]. Transformer models hold par-
ticular promise in the legal domain for two reasons. First, they can
be trained without supervision, thus reducing the amount of task
specific labeled data necessary to make good predictions. This is
particularly beneficial in the legal context, where collecting task
annotations can be prohibitively expensive [21]. Second, Trans-
former models rely on self-attention [36], allowing them to learn
high quality contextual representations of input text. This produces
higher performance on the types of lexically complex texts often
found in the legal domain [6, 43].

However, what significantly detracts from their utility is that
Transformer models are poorly suited for long document analy-
sis. Because the cost of computing self-attention is quadratic in
the length of the input sequence, most Transformer models are
trained with a fixed context window, and can only process a limited
number of tokens at a time. The most common window size for an
open-source LLM—512 tokens—translates to approximately 1 page
of text. In comparison, many legal documents can range between
thirty to a hundred pages. The inability for practitioners to fit the
legal document within the context window has thus significantly
limited the impact Transformer models have had for legal applica-
tions. While some closed-source LLMs such as OpenAI’s GPT-4 and
Anthropic’s Claude have a larger context window, processing an
entire legal document in one request often remains computation-
ally and/or economically infeasible [1, 31]. In addition, concerns
for data privacy and confidentiality preclude most law firms from
applying closed-source LLMs when serving and consulting their
clients [14, 17].

Although the existing literature has proposed two types of ap-
proaches to address the obstacles for long documents analysis, both
suffer from their own significant drawbacks when applied to the
legal domain. In the first approach, researchers have investigated
alternatives to the Transformer architecture, which may enable
longer context windows [39, 42]. However, these methods only
enable models with a context window up to 8,192 tokens (approx-
imately 16 pages of text). These context windows are still insuffi-
ciently large for many legal applications, and they can sometimes
perform worse than traditional Transformers [34]. Thus, under a
second approach, a long document is “segmented” into a set of
discrete chunks. A binary classification model is then applied to

https://doi.org/10.1145/3594536.3595142
https://doi.org/10.1145/3594536.3595142
https://doi.org/10.1145/3594536.3595142
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594536.3595142&domain=pdf&date_stamp=2023-09-07

ICAIL 2023, June 19–23, 2023, Braga, Portugal Zehua Li, Neel Guha, and Julian Nyarko

Figure 1: Our proposed workflow consists of three phases. In the first phase, we divide the input sequence into multiple chunks,
where we use the training data to select the offset size between chunks. In the second phase, we use a logistic regression model
to filter out chunks that are clearly irrelevant based on 100 bag-of-word features. In a last step, we feed the more challenging
examples to Transformer-based models (such as BERT and ERNIE) for training and inference.

each chunk, which returns a positive label if the model predicts any
of the segments to contain the provision in question [21]. However,
this approach is computationally expensive, as practitioners must
apply the Transformer model to each chunk in the document [21].

In this work, we present and study a novel workflow for per-
forming legal long document analysis that is inspired by cascading
classifiers [25, 37]. The intuition behind our approach is that much
of the text contained in a long legal document is often unrelated
to the task, and can thus be efficiently discarded without affecting
performance. Our proposed workflow consists of three steps (Fig-
ure 1). First, we efficiently partition a long document into smaller
sequences (“chunks”). Under minimal assumptions, our chunking
algorithm guarantees that the target sequence is fully contained
within at least one chunk, while minimizing the number of ad-
ditional chunks not containing the target sequence. Second, we
employ a computationally cheap classifier to efficiently discard
chunks with a low probability of containing the target sequence.
Finally, we apply a transformer model to the remaining chunks,
and generate predictions over them. To demonstrate the utility of
our approach, we consider the task of predicting the presence of
individual clauses in long contracts[21]. We find that our pipeline
improves performance while realizing significant gains in computa-
tional efficiency. Across three different clause-extraction tasks, we
find that our method on average reduces the Transformer model’s
training time by 68.96%, while surpassing baseline performance by
1.97% (𝑝∗ = 0.3).

This paper proceeds as follows. In Section 2, we discuss related
work and connect our workflow to prior approaches in computer
vision. In Section 3, we provide an overview of our pipeline and
discuss each of the three stages in greater detail. We present an
empirical study of our approach in Section 4, and discuss broader
implications in Section 5.

2 RELATEDWORK
Large languagemodels (LLMs)—also referred to as “foundationmod-
els” [4]—are million/billion parameter models trained on massive
corpora of unlabelled text. Over the last several years, LLMs have
demonstrated a consistent ability to outperform previous baselines
on a wide array of natural language understanding tasks [8, 26, 35].

More recently, these models have been studied in the legal context,
where their strong generalization capabilities mean that developers
can achieve high performance with significantly smaller labeled
datasets [6, 18, 43]. However, these models are typically trained
with fixed context windows, and thus are incapable of processing
longer input texts. As a result, their applications for legal tasks
involving long legal documents (e.g. contracts or judicial opinions)
are limited [6, 15, 21, 44].

In the context of law, approaches to extend the application of
LLMs to long documents fall into two categories. In the first set
of approaches, a document is divided into shorter, more manage-
able segments (“chunks”), which are sequentially processed by the
model [2, 19, 21, 23]. The model’s outputs over each chunk are then
combined. For instance, [38] generate embeddings for each segment,
and combine embeddings with a simple BiLSTMmodel. A downside
of these approaches is that efficiency gains are often insufficient
for practical use, because the number of chunks a model needs to
process is very large. For instance, with a context window of 128
tokens, the approach used by [21] would split a 40,000 sub-word
document into 312 segments to be fed into the LLM. For applica-
tions involving contracts—where only a subset of segments may
actually be relevant for a given task—this is exceptionally wasteful,
as the majority of segments are unrelated to the task [21].

In the second category of approaches, researchers have sought to
develop alternatives or modifications to the traditional Transformer
architecture which improve performance over longer sequences.
Methods for reducing the quadratic cost of self-attention include
adding sparsity [9] and using approximations for the self-attention
computation [7, 24]. Other approaches explore alternatives to the
traditional self-attention mechanism for the purpose of increasing
the context window size [3, 10, 13, 33, 39, 42]. For instance, [41]
extends [3] by pretraining on Chinese legal corpora with a context
window of 4,096 tokens, while [28] extend a legal Longformer to a
window size of 8,192 tokens. However, even larger context windows
are often insufficiently large for legal documents, which can exceed
one hundred pages. Additionally, for such long documents, models
which apply some combination of local and global attention may be
prohibitively expensive to employ. Finally, empirical results suggest

Efficient Cascading Pipeline for Long Documents ICAIL 2023, June 19–23, 2023, Braga, Portugal

that these simplified versions of self-attention perform poorer than
the standard Transformer architecture [34].

Our proposed pipeline is inspired by similar approaches for other
machine learning tasks. Broadly, these approaches use a “cheap”
classifier to filter out portions of the input that are unlikely to be
relevant of the task, before applying the more “expensive” classifier
to the filtered input. In computer vision, for instance, [37] developed
classifiers that can quickly discard background areas of an image so
that the downstream classifier can focus on the facial area. Applying
the same strategy to NLP, [20] uses visual cues to sift through legal
documents and isolate text of interest to feed the downstream LLM.
This approach can also be found in the context of named entity
recognition, where it is common for models to use simple heuristics
to prune down the space of possible labels to a “candidate list,”
before using a more sophisticated model to pick a predicted label
among the candidates [32, 40].

To our knowledge, two priorworks propose cascading approaches
to long document processing. First, [29] proposes TangoBERT, in
which a smaller model is used to classify high-confidence inputs
at inference time.1 This approach differs from ours insofar as it
focuses on reducing the computational cost only at the inference
stage, while we also reduce the cost during training significantly.
Additionally, [29] benchmarked on short text classification, where
the length of most of its input texts is shorter than 256 tokens.
Second, [12] proposes simultaneously training a “judge” and a “rea-
soner” model, where the judge model is used to select potentially
relevant sentences from the document, and the reasoner model is
tasked with generating a prediction over the concatenated selected
sentences. [12] differs from us insofar as they focus on QA tasks,
and both the judge and reasoner model are sophisticated Trans-
former based architectures. In contrast, our approach identifies
relevant spans in longer documents by efficiently segmenting the
document and utilizes a much simpler logistic regression classifier
to filter out irrelevant input sequences. Lastly, unlike both [29] and
[12], our specific focus lies on applications to the legal domain, and
we provide some tailored suggestions to utilize the approach in
this field. That said, in principle, the approaches provided by [29]
and us are complementary, and we leave for future work how to
combine them for further increases in computational efficiency.

3 METHODOLOGY
In our application, we treat the task as a binary classification task
of smaller text chunks. Our choice is motivated by the fact that,
in many real-world applications from the legal domain, readers
of the documents under investigation are interested in the con-
text under which the relevant text string appears. Providing them
with additional contextual information thus poses advantages over
contextualizing the task as a strict span identification task.

3.1 Data
We use CUAD for benchmarking. CUAD is a curated contracts
dataset with 25 types of agreements, ranging from IP to non-compete
agreements [21]. The contracts have been labeled using text spans
for a set of 41 contract clauses typically of importance to a reader
conducting contract review, such as effective dates and renewal
1The study was developed in parallel to our own work.

Table 1: Chunk statistics after applying our efficient chunk-
ing algorithm. A chunk that contains over 50% of any given
labeled span is considered positive. The table lists the num-
ber of positive/negative chunks for each of our three clause
types, separately for the training set and the test set.

Clause Type Training Testing
#positive #negative #positive #negative

Audit Rights 2,402 66,031 470 14,215
License Grant 3,271 65,162 728 13,957
Cap on Liability 1,657 37,356 319 8,060

terms. Among the different clauses, we focus on Audit Rights, Cap
on Liability and License Grant. We select these clauses because they
are of significant length, of substantive interest to a potential reader
and non-trivial to identify.

3.2 Classification Pipeline
Our classification pipeline consists of three steps. First, we divide
the long documents into smaller chunks, ensuring that each labeled
sequence is fully contained in at least one chunk. In a second step,
we feed the chunks into a logistic classifier that uses as input the
100 words with the highest information gains and predicts whether
the chunks contain the labeled sequence. In a last step, we feed
the chunks with a sufficiently high predicted probability of con-
taining the relevant label into a RoBERTa model to create our final
predictions. We describe each step in more detail below.

3.2.1 Chunking. A traditional approach to working with long in-
put strings is the “sliding-window” approach. In it, inputs are gen-
erated by sliding a fixed-size window over the long document by a
predetermined stride. However, this approach does not take advan-
tage of the known distribution of the labels’ length for a given task.
For tasks in which labeled spans are short, this approach generates
a redundant amount of inputs. For tasks in which spans are long, a
long stride creates the risk that none of the populated chunks fully
contains a span of interest.

In contrast, we propose a chunking process that utilizes infor-
mation on the distribution of the lengths of the labeled spans in
the training data and finds an efficient way to segment the docu-
ment, subject to the constraint that at least one chunk must fully
contain each of the labeled spans. More formally, let𝑊 be window
or chunk size and 𝑆 be the stride, i.e. the number of words by which
the window is moved. Further,𝑇 denotes the length of the text span
of interest. Then our chunking process chooses 𝑆 such that

max 𝑆

s.t. 𝑆 <𝑊 −𝑇𝑚𝑎𝑥
(1)

For every labeled span in the training set, as long as the stride
size is smaller than𝑊 −𝑇𝑚𝑎𝑥 , there exists one chunk where the
text is fully contained. In application, we set a lower bound of 𝑆
to 64 tokens to avoid generating too many chunks. For reference,
only 0.20% of the labeled spans in our experiments are longer than
𝑊 − 64 tokens.

ICAIL 2023, June 19–23, 2023, Braga, Portugal Zehua Li, Neel Guha, and Julian Nyarko

3.2.2 Filtering. Next, we featurize the text using a bag-of-words
model and feed a subset of the input features into a computation-
ally cheap classification algorithm. Among the range of plausible
candidates, we opt for a logistic classifier for its simplicity and com-
putational efficiency. For each input chunk, the logistic classifier
estimates a predicted probability 𝑝 that the chunk contains the
labeled sequence.

A key parameter of our classification pipeline is the threshold
parameter on the predicted probability, which we denote 𝑝∗. Ef-
fectively, this threshold parameter allows the user to determine
how many chunks are passed on to the final classification stage.
A low 𝑝∗ (permissive threshold) ensures that many chunks are
filtered to the last classification step, allowing the (more precise)
Transformer-based model to correct mistakes by the (less precise)
logistic classifier. At the same time, a low 𝑝∗ increases the compu-
tational cost of the classification pipeline. In contrast, a high 𝑝∗
(impermissive threshold) filters out more chunks, increasing com-
putational efficiency at the potential cost of reduced performance.

Because the appropriate threshold 𝑝∗ can vary from one appli-
cation to the next, based on the available computational resources
and the tolerance for mistakes, it is recommended to choose 𝑝∗
after examination of different performance criteria. In most legal
applications, computational outputs are subject to final review. In
this setting, the costs of a false negative far outweigh the costs
of a false positive, because reviewing for false negatives requires
re-reading the entire long document. In this setting characterized
by risk aversion, it appears particularly recommended to focus on
recall at the initial classification stage.

Since logistic regression tends to overfit on training data when
the number of features is large, we select as inputs the top 100
features that have the highest information gains, meaning they are
statistically most indicative of the label of a chunk. We then feed
the text chunk to the classifier using the 100-token bag-of-word
representation. During training, positive examples are given 1,000
times the weight of negative examples to ensure that the second-
stage model only filters out examples that are clearly negative.

3.2.3 RoBERTa Classification. In a last step, we use a computa-
tionally costly but more accurate classifier to generate the final
predictions. Once again, there are a range of classifiers to choose
from, and we opt for a finetuned RoBERTa classifier.

RoBERTa is a large language model that is structurally the same
as BERT but is trained with a dataset 10 times larger than BERT’s
corpus.[27] We finetune the model using training examples passed
down from the filtering stage, which include the true positives,
false positives, and false negatives. We include examples the logistic
classifier mistakenly labeled as negative to increase the number of
positive examples in RoBERTa’s training dataset.

4 RESULTS
We test the proposed approach against three clauses in CUAD (Audit
Rights, Cap on Liability, and License Grant). In the following section,
we investigate how the pipeline performs, stage by stage, focusing
on the example of Audit Rights.

Table 2: The performance of the logistic classification model
on Audit Rights given different predicted probability thresh-
old 𝑝∗. The Precision and F1 columns are colored gray be-
cause in most legal applications, the primary focus of the
user should be on Recall and % passed to RoBERTa under the
different thresholds 𝑝∗.

Threshold 𝑝∗ Precision Recall F1 % passed to RoBERTa
0.1 12.79% 97.02% 22.60% 24.28%
0.2 14.29% 97.02% 24.90% 21.74%
0.3 15.40% 97.02% 26.57% 20.17%
0.4 16.41% 96.81% 28.06% 18.88%
0.5 17.25% 95.96% 29.25% 17.80%
0.6 18.14% 95.96% 30.51% 16.93%
0.7 19.14% 95.74% 31.90% 16.01%
0.8 20.40% 94.89% 33.58% 14.89%
0.9 22.19% 93.40% 35.87% 13.47%

4.1 Chunking
The longest labeled span for Audit Rights has a length 𝑇𝑚𝑎𝑥 of
465 tokens, while the shortest has a length 𝑇𝑚𝑖𝑛 of 2. We therefore
set the stride to𝑚𝑎𝑥 (64,𝑊 −𝑇𝑚𝑎𝑥 + 1) = 64 to avoid generating
an excessive amount of chunks. The chunking process generates
83, 118 chunks across the entire dataset. The statistics are depicted
in Table 1.

4.2 Filtering
The logistic classifier, despite its relative simplicity, performs well
on the task of filtering out obviously negative inputs. As seen in
Table 2, the model manages to trim out a significant portion of input
chunks while maintaining a high recall. It can filter out 79.83% of
the inputs with a recall of 97.02%, or maintain a 94.89% recall while
passing down only 14.89% of the inputs. That is because, as shown
in Figure 2, the vast majority of the inputs have a predicted proba-
bility lower than 0.1. Since training of the RoBERTa model without
stopping conditions is of linear time complexity with regards to
the number of training examples, using the second-stage logistic
classification model filters out simple negative examples. The user
can decide on a predicted probability threshold p* based on their
risk tolerance, computational resources, the model’s recall and the
percentage of inputs it passed down to RoBERTa.

For the purpose of demonstrating that the pipeline performs
well across different thresholds, rather than choosing a specific
threshold, we evaluate it on multiple thresholds.

4.3 RoBERTa Classification
The performance of the RoBERTa classification model is depicted
in the second row of Figure 3. The AUROCs are high across all
filtering thresholds, with a slight decrease towards higher thresh-
olds, suggesting that the classification becomes more challenging
as there are fewer inputs that are obviously negative.

Assessing the entire pipeline at a threshold of 𝑝∗ = 0.3, the
three-stage process achieves a higher AUROC (97.28%) compared
to that of the baseline RoBERTa model (92.41%), while reducing
the pipeline’s total training time by 82.67%. Our proposed method
also achieves an F1 score (79.22%) on par with the baseline model’s

Efficient Cascading Pipeline for Long Documents ICAIL 2023, June 19–23, 2023, Braga, Portugal

Table 3: Performance and the training/inference time of the entire pipeline using different filtering thresholds 𝑝∗. In the
baseline where 𝑝∗ = 0.0, every input is passed down to the second-stage RoBERTa-base model for training and evaluation. The
pipelines are allowed to utilize 8 Intel Xeon Platinum 8259CL CPUs and 3 Nvidia Tesla T4 GPUs.

Clause 𝑝∗ Second Stage (LR) Third Stage (RoBERTa) Entire Pipeline
Recall %examples Recall F1 𝑇𝑖𝑚𝑒𝑇 F1 AUROC 𝑇𝑖𝑚𝑒𝑇 𝑇𝑖𝑚𝑒𝐼

Audit
Rights

0.0 — 100.00% 79.79% 78.95% 100.00% 78.95% 92.41% 100.00% 100.00%
0.1 97.02% 24.28% 78.73% 76.71% 20.24% 75.58% 96.86% 22.02% 23.57%
0.2 97.02% 21.74% 88.16% 79.53% 17.47% 78.44% 97.25% 19.24% 21.29%
0.3 97.02% 20.17% 84.87% 80.37% 15.56% 79.22% 97.28% 17.33% 20.03%
0.4 96.81% 18.88% 87.25% 82.97% 15.11% 81.69% 97.29% 16.88% 18.79%
0.5 95.96% 17.80% 86.70% 78.75% 13.92% 77.27% 96.78% 15.70% 17.75%
0.6 95.96% 16.93% 86.70% 82.75% 13.19% 81.12% 96.97% 14.97% 16.90%
0.7 95.74% 16.01% 86.67% 79.67% 12.02% 78.08% 96.81% 13.80% 15.93%
0.8 94.89% 14.89% 88.57% 80.78% 10.72% 78.84% 96.26% 12.50% 14.80%
0.9 93.40% 13.47% 85.65% 80.26% 9.79% 77.69% 95.63% 11.58% 13.41%

License
Grant

0.0 — 100.00% 77.34% 76.65% 100.00% 77.34% 95.05% 100.00% 100.00%
0.1 96.70% 36.71% 80.97% 79.94% 33.66% 78.62% 96.12% 35.40% 52.45%
0.2 95.88% 33.79% 77.94% 79.13% 30.44% 77.44% 95.82% 32.18% 48.22%
0.3 94.78% 31.80% 83.04% 81.57% 27.69% 79.42% 95.12% 29.42% 45.97%
0.4 94.23% 30.25% 78.86% 79.33% 26.25% 76.96% 94.97% 27.98% 42.38%
0.5 93.96% 28.93% 80.12% 80.71% 24.88% 78.17% 95.00% 26.62% 39.91%
0.6 93.41% 27.85% 81.18% 79.20% 23.74% 76.56% 94.63% 25.47% 38.46%
0.7 92.03% 26.52% 81.49% 80.47% 21.62% 77.17% 93.82% 23.37% 35.49%
0.8 91.07% 24.93% 82.96% 81.60% 20.48% 77.85% 93.50% 22.21% 33.15%
0.9 89.56% 22.48% 83.31% 81.32% 19.77% 77.00% 92.65% 21.50% 29.62%

Cap on
Liability

0.0 — 100.00% 74.61% 76.16% 100.00% 76.16% 94.29% 100.00% 100.00%
0.1 96.87% 54.62% 77.35% 78.23% 52.43% 76.97% 92.07% 55.06% 35.75%
0.2 96.87% 49.42% 76.70% 79.00% 47.49% 77.70% 94.94% 50.15% 32.71%
0.3 96.55% 45.86% 78.57% 78.70% 43.67% 77.32% 95.25% 46.35% 30.85%
0.4 95.92% 43.22% 78.43% 78.30% 41.85% 76.68% 94.83% 44.53% 29.30%
0.5 95.61% 40.67% 76.07% 76.69% 38.48% 74.96% 94.82% 41.16% 28.18%
0.6 95.30% 38.38% 76.97% 79.86% 35.50% 77.87% 94.94% 38.20% 26.88%
0.7 93.73% 36.11% 79.26% 79.80% 34.40% 77.20% 94.43% 37.10% 25.58%
0.8 93.10% 33.24% 84.18% 83.19% 31.81% 80.26% 94.09% 34.53% 24.15%
0.9 92.16% 29.71% 81.97% 81.14% 27.40% 77.87% 93.97% 30.10% 23.79%

78.95%. We surmise that is because, as the logistic regression model
filters out most of the examples at the training stage with high confi-
dence, the RoBERTamodel can focus on discerning a narrower band
of cases the upstreammodel deems challenging, therefore achieving
a higher overall AUROC with much fewer training examples.

4.4 Additional Experiments
We evaluate the proposed approach on two other legal clauses in
CUAD, Cap on Liability and License Grant. The performance can be
found in Table 3. In both cases, the proposed pipeline achieves an
AUROC score that is on par with or surpassing the baseline perfor-
mance, suggesting the pipeline is adaptable to different tasks. For
License Grant, at a threshold of 𝑝∗ = 0.3, the pipeline achieves an
AUROC score of 95.12% compared to the baseline model’s 95.05%.
ForCap on Liability, the pipeline surpasses the baseline’s 94.29%AU-
ROC, demonstrating a better ability at discerning positive chunks.
Again, we note that the higher performance might be a conse-
quence of the more focused training task that is centered around
distinguishing difficult examples. The pipeline achieves high per-
formance while significantly reducing the RoBERTa training time
by at least 47.6%.

5 DISCUSSION
We proposed a three-stage cascading pipeline for long legal docu-
ment classification. In a legal document classification benchmark,
the filter based on a logistic regression classifier accurately removes
a sizeable proportion of negative inputs while feeding a smaller
portion of challenging examples to the Transformer-based classifier.
The efficient cascading pipeline achieves performance surpassing
the an alternative approach without a filter. Our suggested pipeline
is simple to integrate, significantly decreases the amount of time
spent training the Transformer-based model and speeds up long-
input inference.

Unlike other approaches that implement the efficiency-improving
measures into the LLM architecture (such as BigBird [42]), the pro-
posed three-stage pipeline allows researchers to balance overall
efficiency against predictive quality by adjusting the proportion
of negative examples to filter at the second stage. Our approach
can easily be integrated with existing classification systems. For in-
stance, users can replace the third-stage RoBERTa base model with
a Longformer model that supports inputs as long as 4,096 tokens.
The longer input sequence, together with the dynamic chunking,
increase the maximally allowed stride to 4096−𝑡𝑚𝑎𝑥 +1, potentially
improving the pipeline efficiency even further.

ICAIL 2023, June 19–23, 2023, Braga, Portugal Zehua Li, Neel Guha, and Julian Nyarko

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2
·104

Threshold 𝑝∗

Nu
m
be
ro

fi
np

ut
s

Figure 2: The distribution of the predicted probabilities for
the Audit Rights test set. The vast majority of the inputs
(75.6%) have a predicted probability lower than 0.1.

0.92

0.94

0.96

0.98

1.00

Fir
st

-S
ta

ge
 R

ec
al

l

89%
91%
93%
95%
97%
99%

AU
RO

C

RoBERTa
Entire Pipeline

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

10%
25%
40%
55%
70%
85%

%
in

pu
ts

 to
 R

oB
ER

Ta

Figure 3: The performance of the pipeline on Audit Rights
at different stages.

Inputs that are clearly irrelevant to the task should not take
the same amount of floating point operations to classify as more
challenging inputs do. The model should also spend less time and

energy finetuning on simple examples. The proposed three-stage
approach thus complements the latest development in LLMs by
directing the Transformer-based models to more challenging inputs
and shortening the finetuning process.

As this paper primarily focuses on the three-stage pipeline’s
application in legal document classification, additional evaluations
are needed to assess the applicability and utility of the cascading
approach to the broader set of tasks involving long document clas-
sification and information retrieval. We also do not explore the in-
tegration of the cascading pipeline with other efficiency-improving
measures. We look forward to future research on cascading LLM
pipelines that dynamically target the training and inferring efforts
to the more challenging examples.

REFERENCES
[1] Anthropic AI. 2023. Introducing Claude. https://perma.cc/LLR5-YZCC.
[2] Purbid Bambroo and Aditi Awasthi. 2021. Legaldb: Long distilbert for legal

document classification. In 2021 International Conference on Advances in Electrical,
Computing, Communication and Sustainable Technologies (ICAECT). IEEE, 1–4.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[4] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the Opportunities
and Risks of Foundation Models. https://doi.org/10.48550/ARXIV.2108.07258

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopou-
los, Daniel Martin Katz, and Nikolaos Aletras. 2021. Lexglue: A benchmark dataset
for legal language understanding in English. arXiv preprint arXiv:2110.00976
(2021).

[7] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794 (2020).

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[9] Xiang Dai, Ilias Chalkidis, Sune Darkner, and Desmond Elliott. 2022. Revisit-
ing transformer-based models for long document classification. arXiv preprint
arXiv:2204.06683 (2022).

[10] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860 (2019).

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
https://doi.org/10.48550/ARXIV.1810.04805

[12] Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang. 2020. Cogltx: Applying
bert to long texts. Advances in Neural Information Processing Systems 33 (2020),

https://doi.org/10.48550/ARXIV.2108.07258
https://doi.org/10.48550/ARXIV.1810.04805

Efficient Cascading Pipeline for Long Documents ICAIL 2023, June 19–23, 2023, Braga, Portugal

12792–12804.
[13] Siyu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and

Haifeng Wang. 2020. ERNIE-Doc: A retrospective long-document modeling
transformer. arXiv preprint arXiv:2012.15688 (2020).

[14] Emily Dreibelbis. 2023. Samsung Software Engineers Busted for Pasting
Proprietary Code Into ChatGPT. https://www.pcmag.com/news/samsung-
software-engineers-busted-for-pasting-proprietary-code-into-chatgpt.
https://www.pcmag.com/news/samsung-software-engineers-busted-for-
pasting-proprietary-code-into-chatgpt

[15] Mahmoud El-Haj, Nadhem Zmandar, Paul Rayson, Marina Litvak, Nikiforos
Pittaras, George Giannakopoulos, Aris Kosmopoulos, Blanca Carbajo-Coronado,
Antonio Moreno-Sandoval, et al. 2022. The Financial Narrative Summarisation
Shared Task (FNS 2022). In Proceedings of the 4th Financial Narrative Processing
Workshop@ LREC2022. 43–52.

[16] Ryan Franklin and Nicholas Wind. 2022. Force Majeure Clauses in the Af-
termath of the Covid-19 Pandemic and the Implications for Government Enti-
ties. https://www.americanbar.org/groups/government_public/publications/pass-
it-on/spring-2022/spring22-franklin-wind-forcemajeure/.

[17] Karla Grossenbacher. 2023. Employers Should Consider These Risks When Em-
ployees Use ChatGPT. https://news.bloomberglaw.com/us-law-week/employers-
should-consider-these-risks-when-employees-use-chatgpt.

[18] Neel Guha, Daniel E Ho, Julian Nyarko, and Christopher Ré. 2022. LegalBench:
Prototyping a Collaborative Benchmark for Legal Reasoning. arXiv preprint
arXiv:2209.06120 (2022).

[19] Marti A Hearst. 1994. Multi-paragraph segmentation of expository text. arXiv
preprint cmp-lg/9406037 (1994).

[20] Allison Hegel, Marina Shah, Genevieve Peaslee, Brendan Roof, and Emad Elwany.
2021. The Law of Large Documents: Understanding the Structure of Legal
Contracts Using Visual Cues. (2021). https://doi.org/10.48550/ARXIV.2107.08128

[21] Dan Hendrycks, Collin Burns, Anya Chen, and Spencer Ball. 2021. CUAD: An
Expert-Annotated NLP Dataset for Legal Contract Review. https://doi.org/10.
48550/ARXIV.2103.06268

[22] David A Hoffman and Anton Strezhnev. 2022. Leases as forms. Journal of
Empirical Legal Studies 19, 1 (2022), 90–134.

[23] Maor Ivgi, Uri Shaham, and Jonathan Berant. 2023. Efficient long-text understand-
ing with short-text models. Transactions of the Association for Computational
Linguistics 11 (2023), 284–299.

[24] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451 (2020).

[25] Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing Neural Predic-
tions. https://doi.org/10.48550/ARXIV.1606.04155

[26] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar,
Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove,
Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson,
Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu
Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul,
Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya
Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary,
William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. 2022.
Holistic Evaluation of Language Models. https://doi.org/10.48550/ARXIV.2211.
09110

[27] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. https://doi.org/10.48550/
ARXIV.1907.11692

[28] Dimitris Mamakas, Petros Tsotsi, Ion Androutsopoulos, and Ilias Chalkidis. 2022.
Processing Long Legal Documents with Pre-trained Transformers: Modding
LegalBERT and Longformer. arXiv preprint arXiv:2211.00974 (2022).

[29] Jonathan Mamou, Oren Pereg, Moshe Wasserblat, and Roy Schwartz. 2022. Tan-
goBERT: Reducing Inference Cost by using Cascaded Architecture. https:
//doi.org/10.48550/ARXIV.2204.06271

[30] OpenAI. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774 (2023).
arXiv:2303.08774 [cs.CL]

[31] OpenAI. 2023. Product Specification for GPT-4. https://perma.cc/53LN-APQT.
[32] Laurel Orr, Megan Leszczynski, Simran Arora, Sen Wu, Neel Guha, Xiao Ling,

and Christopher Re. 2020. Bootleg: Chasing the tail with self-supervised named
entity disambiguation. arXiv preprint arXiv:2010.10363 (2020).

[33] Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim
Dehak. 2019. Hierarchical transformers for long document classification. In 2019
IEEE automatic speech recognition and understanding workshop (ASRU). IEEE,
838–844.

[34] Hyunji Hayley Park, Yogarshi Vyas, and Kashif Shah. 2022. Efficient classification
of long documents using transformers. arXiv preprint arXiv:2203.11258 (2022).

[35] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias
Gallé, et al. 2022. BLOOM: A 176B-Parameter Open-AccessMultilingual Language
Model. arXiv preprint arXiv:2211.05100 (2022).

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. https://doi.org/10.48550/ARXIV.1706.03762

[37] Paul Viola andMichael J Jones. 2004. Robust real-time face detection. International
journal of computer vision 57, 2 (2004), 137–154.

[38] Lulu Wan, George Papageorgiou, Michael Seddon, and Mirko Bernardoni. 2019.
Long-length legal document classification. arXiv preprint arXiv:1912.06905 (2019).

[39] Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang, and Xing Xie. 2021. Fast-
former: Additive Attention Can Be All You Need. https://doi.org/10.48550/
ARXIV.2108.09084

[40] LedellWu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer.
2020. Zero-shot Entity Linking with Dense Entity Retrieval. In EMNLP.

[41] Chaojun Xiao, Xueyu Hu, Zhiyuan Liu, Cunchao Tu, and Maosong Sun. 2021.
Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents.
https://doi.org/10.48550/ARXIV.2105.03887

[42] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer sequences. Advances in Neural
Information Processing Systems 33 (2020), 17283–17297.

[43] Lucia Zheng, Neel Guha, Brandon R Anderson, Peter Henderson, and Daniel E
Ho. 2021. When does pretraining help? assessing self-supervised learning for law
and the casehold dataset of 53,000+ legal holdings. In Proceedings of the eighteenth
international conference on artificial intelligence and law. 159–168.

[44] Nadhem Zmandar, Mahmoud El-Haj, Paul Rayson, Marina Litvak, Geroge Gian-
nakopoulos, Nikiforos Pittaras, et al. 2021. The financial narrative summarisation
shared task fns 2021. In Proceedings of the 3rd Financial Narrative Processing
Workshop. 120–125.

https://www.pcmag.com/news/samsung-software-engineers-busted-for-pasting-proprietary-code-into-chatgpt
https://www.pcmag.com/news/samsung-software-engineers-busted-for-pasting-proprietary-code-into-chatgpt
https://www.americanbar.org/groups/government_public/publications/pass-it-on/spring-2022/spring22-franklin-wind-forcemajeure/
https://www.americanbar.org/groups/government_public/publications/pass-it-on/spring-2022/spring22-franklin-wind-forcemajeure/
https://doi.org/10.48550/ARXIV.2107.08128
https://doi.org/10.48550/ARXIV.2103.06268
https://doi.org/10.48550/ARXIV.2103.06268
https://doi.org/10.48550/ARXIV.1606.04155
https://doi.org/10.48550/ARXIV.2211.09110
https://doi.org/10.48550/ARXIV.2211.09110
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.2204.06271
https://doi.org/10.48550/ARXIV.2204.06271
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.2108.09084
https://doi.org/10.48550/ARXIV.2108.09084
https://doi.org/10.48550/ARXIV.2105.03887

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data
	3.2 Classification Pipeline

	4 Results
	4.1 Chunking
	4.2 Filtering
	4.3 RoBERTa Classification
	4.4 Additional Experiments

	5 Discussion
	References

